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We simulate the tapping of a bed of hard disks in a rectangular box by using a pseudodynamic algorithm. In
these simulations, arches are unambiguously defined and we can analyze their properties as a function of the
tapping amplitude. We find that an order-disorder transition occurs within a narrow range of tapping amplitudes
as has been seen by others. Arches are always present in the system although they exhibit regular shapes in the
ordered regime. Interestingly, an increase in the number of arches does not always correspond to a reduction in
the packing fraction. This is in contrast with what is found in three-dimensional systems.
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I. INTRODUCTION

The study of structural properties of assemblies of mac-
roscopic particles packed in a container has become an im-
portant area of granular matter. Properties such as packing
fraction ���, coordination number �z�, and arch distributions
depend on the way the packings are created. The so-called
“Chicago experiment” �1� has shown that a tapped granular
bed can achieve a stationary state where the system charac-
terizing parameters �in this case �� depend only on the tap-
ping amplitude. This simplifies our investigations when we
are interested only in the steady state of the system.

Arching is one of the collective phenomena that many
associate to the appearance of voids in a granular sample that
leads to the lowering of �. Moreover, arching is directly
related to the reduction of particle-particle contacts in the
assembly, which determines the value of z �2,3�. Arch forma-
tion is crucial in the jamming of granular flows �4–7�, and it
has also been proposed as a mechanism for size segregation
�8,9�.

Two-dimensional �2D� granular systems merit attention
due to the multiple applications in industry and urban life
�pills, bottles, etc., on a conveyor belt �10�, traffic jams �11�,
and crowd control �12�� and also due to the possibility of
testing theoretical models that are particularly simple to treat
in 2D.

Simulation studies of the shaking of 2D granular beds
have been carried out by others in the past �see, for example,
Ref. �13��. However, these pseudodynamic simulations do
not consider simultaneous deposition of the grains. This pre-
vents arching during deposition, which is a main ingredient
in granular systems. On the other hand, simulations through
realistic granular dynamics have the drawback that there is
not a clear criterion to decide when the system is fully de-
posited, since kinetic energy does not vanishes completely in
these simulations. Besides, identifying which particles sup-
port a given particle in these type of simulations may prove
rather complex.

In this work we study the formation of arches in a 2D
assembly of hard disks by using a pseudodynamic simulation

of the tapping and simultaneous deposition of inelastic rough
particles. We follow the changes in �, z, and arch properties
as a function of the tapping amplitude. Also, an annealed
tapping similar to the Chicago experiment is carried out on
the system.

II. ARCHING AND COORDINATION NUMBER

Arches are multiparticle structures formed during simul-
taneous �nonsequential� deposition of an assembly of granu-
lar particles. Particles in an arch support each other so that
the whole set remains stable against gravity �or the driving
force that promotes deposition� �3�.

In a two-dimensional bed of convex particles constructed
by sequential deposition, the mean coordination number �z�
is 4: each newly deposited particle adds two contacts—
which stabilize the particle—to the system. If particles are
deposited nonsequentially, mutual contacts are created where
two particles share a stabilizing contact. This diminishes by
1—with respect to a sequential deposition—the total number
of contacts in the system and so the value of �z� drops.
Arches in 2D are string like: any arch has two end particles
that share a single mutual contact and a variable number of
center particles that share two mutual contacts each. If n�s� is
the number of arches consisting of s particles in a system of
N particles, there are

p1 = 2�
s=2

N

n�s� �1�

end particles and

p2 = �
s=3

N

�s − 2�n�s� �2�

center particles in the assembly. Here, n�s=1� corresponds to
the number of particles that do not belong to any arch. There-
fore, the mean coordination number can be obtained as

�z�support = 4 −
p1

N
− 2

p2

N
. �3�

We use the subscript “support” because this coordination
number does not take into account the existence of nonsup-*Email address: luis@iflysib.unlp.edu.ar
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porting contacts. In nonsequentially deposited beds there will
be some contacts that do not serve to the stability of any of
the two touching particles. In our simulations, these nonsup-
porting contacts represent least than 0.3% of the contacts.
Using Eqs. �1�–�3� and after some algebra we obtain

�z�support = 2�1 +
1

N
�
s=1

N

n�s�	 . �4�

The analysis above can be done also in 3D but it requires
more complex expressions due to the fact that arches can
present branches �2,3,14�.

Bearing in mind that �s=1
N sn�s�=N, we can model n�s� as

a simple exponential decay in the limit N→�—i.e.,

n�s�/N = 2�cosh��� − 1�exp�− �s� , �5�

with � a positive number. In this model we obtain

�z�support = 4 − 2 exp�− �� . �6�

The exponential model seems to work well for stringlike
bridges in 3D �see Ref. �14��. We will see below that, in 2D,
this is only a rough model for n�s� according to our simula-
tion results. However, from Eq. �6� we can already observe
that �z�support can only vary between 2 and 4 in 2D. Notice
that this result does not depend on the shape of the particles
as long as they are convex and support each other through
point contacts. The case �z�support=2 corresponds to a very
particular configuration where all particles belong to a single
large arch. This, of course, is impossible to achieve with
walls present.

In a graph of p2 /N as a function of p1 /N �see Fig. 1� any
packing must belong to the triangle ��0,0� , �0,1� , �1,0�� and
the lines parallel to the segment ��0,0.5� , �1,0�� correspond
to states of equal �z�support. The curve shown in Fig. 1 corre-

sponds to the loci of the states given by the exponential
model of n�s� with � ranging from 0 to �. In practice,
�z�support only ranges from 3 to 4 �see the simulation data
point in Fig. 1�. The lower limit ��z�support=3� has been sug-
gested to correspond to the marginally rigid state in 2D �15�.

III. SIMULATION DETAILS

Our simulations are based on an algorithm for inelastic
hard disks designed by Manna and Khakhar �17,18�. This is
a pseudodynamics that consists in small falls and rolls of the
grains until they come to rest by contacting other particles or
the system boundaries. We use a container formed by a flat
base and two flat vertical walls. No periodic boundary con-
ditions are applied. Once all the grains come to rest, the
system is expanded and randomly shaken to simulate a ver-
tical tap. Then, a new deposition cycle begins. After several
taps, the system achieves a steady state where all character-
izing parameters fluctuate around an equilibrium value.

The deposition algorithm consists in picking up a disk in
the system and performing a free fall of length � if the disk
has no supporting contacts, or a roll of arclength � over its
supporting disk if the disk has one single supporting contact
�17,18�. Disks with two supporting contacts are considered
stable and left in their positions. If in the course of a fall of
length � a disk collides with another disk �or the base�, the
falling disk is put just in contact and this contact is defined as
its first supporting contact. Analogously, if in the course of a
roll of length � a disk collides with another disk �or a wall�,
the rolling disk is put just in contact. If the first supporting
contact and the second contact are such that the disk is in a
stable position, the second contact is defined as the second
supporting contact; otherwise, the lowest of the two contact-
ing particle is taken as the first supporting contact of the
rolling disk and the second supporting contact is left unde-
fined. If, during a roll, a particle reaches a lower position
than the supporting particle over which it is rolling, its first
supporting contact is left undefined. A moving disk can
change the stability state of other disks supported by it;
therefore, this information is updated after each move. The
deposition is over once each particle in the system has both
supporting contacts defined or is in contact with the base
�particles at the base are supported by a single contact�.
Then, the coordinates of the centers of the disks and the
corresponding labels of the two supporting particles, wall, or
base are saved for analysis.

The tapping of the system is simulated by multiplying the
vertical coordinate of each particle by A �with A�1�. Then,
the particles are subjected to several �about 20� Monte Carlo
loops where positions are changed by displacing particles a
random length �r uniformly distributed in the range 0��r
�A−1. New configurations that correspond to overlaps are
rejected. This disordering phase is crucial to avoid particles
falling back again into the same positions. Moreover, the
upper limit for �r �i.e., A−1� is deliberately chosen so that a
larger tap promotes larger random changes in the particle
positions.

The simulations are carried out in a rectangular box of
width 20 containing 2000 equal-sized disks of radius r=0.1

FIG. 1. Mutual stability phase diagram for 2D packings. Here,
p1 /N and p2 /N are the fractions of particles that present one and
two mutually stable supporting contacts, respectively. The state
point of any packing must lie in the triangle defined by �0,0�, �0,1�,
and �1,0�. The dotted lines correspond to states of equal �z�support

�the numbers indicate the corresponding values�. The solid curve
represents all the states that can be obtained through the exponential
model �see text�. Open circles correspond to a representative sample
of the packings generated in our simulations.
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+1/
2�0.807. The disk size is chosen in such way that the
neighbor-linked-cell system used to speed up the simulation
contains a single particle per cell. Initially, disks are placed at
random in the simulation box �with no overlaps� and depos-
ited using the pseudodynamic algorithm. Then, 103 tapping
cycles are performed for equilibration followed by 103 taps
for production; saving only 1 every 10 fully deposited con-
figurations. Tapping amplitudes range from 1.02 up to 2.0.
Enlarging the width of the simulation box up to 30 has
shown no effect on the results that we present here. The same
is true if one reduces the number of particles down to 500.

An important point in this simulations is the effect that the
parameter � has in the results since particles do not move
simultaneously but one at a time. One might expect that in
the limit �→0 we should recover a fairly “realistic” dynam-
ics for a fully inelastic rough disk dragged downwards at
constant velocity. This should represent particles deposited in
a viscous medium or carried by a conveyor belt. In Fig. 2, we
show � and �z�support for A=1.1 as a function of �. As we can
see, the results are independent of � for small values of the
parameter. Since computation efficiency decreases with de-
creasing �—due to the number of free falls required for the
particles to come together at the bottom of the container—we
choose the largest value that yield results indistinguishable
from the small-� limit within statistical errors �i.e., �=0.01�.
This value might be inappropriate for simulations with small
values of A. We have checked that results are consistent in
such simulations by reducing � up to an order of magnitude.

The deposited configurations are analyzed in search of
arches. We first identify all mutually stable particles—which

we define as directly connected—and then we find the arches
as chains of connected particles. Two disks A and B are
mutually stable if A is the left supporting particle of B and B
is the right supporting particle of A or vice versa. We mea-
sure the total number of arches, arch size distribution n�s�,
and the horizontal span distribution of the arches ns�x�. The
latter is the probability density of finding an arch consisting
of s disks with horizontal span between x and x+dx. The
horizontal span �or lateral extension� is defined as the pro-
jection onto the horizontal axis of the segment that joins the
centers of the right-end disk and the left-end disk in the arch.

IV. RESULTS

In Fig. 3 we show the area fraction �or packing fraction� �
occupied by the disks as a function of the tapping amplitude.
We also plot, in Fig. 3, �z�support as a function of A. We can
identify four parts in Fig. 3�a�. For small values of A �up to
about 1.1�, the area fraction falls very slowly from just above
0.84 to around 0.83. In the range 1.1�A�1.15, simulations
present large fluctuations but a sharp drop is observed, with
� ranging between 0.76 and 0.83. Then, in the range 1.15
�A�1.5 there is a mild decrease in �. Finally, for A�1.5,
we can observe in Fig. 3�a� a very slow rise in �.

The sharp change in � around A=1.13 has been described
previously as an order-disorder transition due to the crystal-
lization of the disks into a triangular lattice. This transition
has been located around �=0.8 by experiments �19�, which
agrees with our simulations. The maximum value of � in the

FIG. 2. Packing fraction �a� and �z�support �b� as a function of the
parameter � of the simulation algorithm for A=1.1. Solid lines are
only to guide the eye.

FIG. 3. Packing fraction �a� and �z�support �b� as a function of the
tapping amplitude A.
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crystalline regime depends strongly on the ratio between the
box width and the diameter of the disks. For integer ratios,
the crystal can achieve the smallest lattice constant, hence
the highest packing fraction. We do not commensurate our
box to the particle size since this situation is difficult to
achieve in experiments anyway.

The slow increase in � for very large tapping amplitudes
is consistent with experiments carried out using noncircular
particles “deposited” by a conveyor belt in a �-shaped con-
tainer �15�. In this regime, we expect � to slowly approach
the value of sequentially deposited disks �i.e., ��0.82 �21��,
since a very strong tap should separate out the disks to such
degree that they will fall back without many multi-particle
collisions.

In Fig. 4 we show two examples of packings with 250
particles corresponding to the disordered �Fig. 4�a�� and the
ordered �Fig. 4�b�� regimes. Arches are indicated with seg-
ments that join mutually stable particles. It is important to
notice here that in our simulations particles that reach the
base “stick” to their positions and are not pushed aside by
further colliding disks during deposition. This prevents the
formation of completely regular crystals since the first layer
is already a randomly deposited layer. In a proper granular
dynamic simulation one obtains more ordered structures
�20�. Our ordered regime is better described as a layering of
the system rather than a crystallization. This is indeed a limi-
tation of the model since most 2D granular beds tend to
present crystal-like order in real life.

It is interesting to see whether in the transition region
�1.1�A�1.15� the system presents a phase separation type
behavior. We have plotted the profile of � in the vertical �y�
direction for some tapping amplitudes in Fig. 5. In the dis-
ordered regime, with exception of several bottom layers, the
system shows a constant ��y� �with values below 0.8�. In the

ordered regime, the system has also a constant ��y� �with
values around 0.84�. Within the transition region, however,
the profile shows a monotonic decrease from orderedlike
area fractions down to disorderedlike densities. We have
found no sign of a stepwise profile which would indicate a
coexistence between an ordered phase and a disordered
phase.

The most striking results from our simulations is the be-
havior of �z�support as a function of A �see Fig. 3�b��. Here, we
can identify only three distinct parts. For small A �within the
ordered region�, �z�support grows with A. This implies that
larger tapping amplitudes “destroy” mutual contacts in the
ordered phase. Interestingly, at the order-disorder transition,
�z�support presents a sharp drop. This may be attributed to the
appearance of many arches in the system that lead to the loss
of order. Finally, within the disordered region, the system
increases its coordination linearly with A. This last observa-
tion is consistent with experiments in 2D of particles “depos-
ited” by a conveyor belt �15�. Clearly, arches are always
present in the system since �z�support�4 in all cases. The
striking feature is the nonmonotonic behavior of �z�support.
Starting from small tapping amplitudes one can remove mu-
tual contacts �and hence arches� by increasing A. However,

FIG. 4. Examples of the packings. �a� 250 particles tapped with
A=1.3 which corresponds to the disordered regime. �b� 250 par-
ticles tapped with A=1.1 which corresponds to the ordered regime.
Arches are indicated by segments joining mutually stable particles.

FIG. 5. Vertical profile of the packing fraction for various values
of A: squares �1.1�, circles �1.13�, up triangles �1.135�, stars �1.14�,
diamonds �1.15�, down triangles �1.25�, and pentagons �2.0�.

FIG. 6. Number of arches per unit particle as a function of the
tapping amplitude. The solid line is only a guide to the eye. The
inset shows a semilog plot of the arch size distribution n�s�. Sym-
bols correspond to our simulations for A=1.3 and the dotted line to
a fit with a second order polynomial.

PUGNALONI, VALLUZZI, AND VALLUZZI PHYSICAL REVIEW E 73, 051302 �2006�

051302-4



at the order-disorder transition a small increase in A leads to
the creation of many new mutual contacts. Once in the new
disordered regime, one can again remove mutual contacts by
a further increase in A. Unfortunately, we are unable to sup-
port these findings with experimental evidence �apart from
the behavior in the disordered regime that agrees with Blu-
menfeld et al.�15�� since coordination numbers are rarely
obtained in experiments. It is worth pointing out that simu-
lations of 3D systems show a monotonic decrease �not in-
crease� in �z� as A is increased �see, for example, Ref. �16��.

From Eq. �4� we know that an increase in the number of
arches in the system necessarily leads to a decrease of
�z�support. This can be seen by comparing Fig. 3�b� with Fig. 6
where we plot the total number of arches per particle versus
A. Of course, we see again a sudden change at the order-
disorder transition. Arches are more rare in the ordered phase
just before the transition to the disordered phase. As we men-
tioned, in both regimes �ordered and disordered�, arches are
“destroyed” by increasing the tapping amplitude.

It is commonly said that arches are responsible for voids
in a granular pack which, in turn, diminish �. However, from
our results we can conclude that, in 2D, this is only true
within the order-disorder transition region �1.1�A�1.15�
and for very large tapping amplitudes �A�1.5�. In both cases
a decrease in the number of arches corresponds to an in-
crease in the packing fraction and vice versa. In contrast, for
the rest of the packings �i.e., for A�1.1 and 1.15�A�1.5�,
a decrease in the number of arches coincides with a decrease
in the packing fraction. This result may seem rather counter-
intuitive; however, is not just the number of arches but their
geometrical properties that determine the total volume of the
voids left beneath them. Let us remind ourselves that random
packings of disks containing no arches at all �i.e., �z�support

=4� have ��0.82 �21�, which is lower than our arch-
containing ordered packings and higher than our arch-
containing disordered packings.

In the inset of Fig. 6 we show the arch size distribution
n�s�. This distribution is rather insensitive to A; hence, we
plot n�s� for a single tapping amplitude. Since �z�support de-
pends on the sum of n�s� through Eq. �4�, small variations of
n�s� that are not appreciable in a semilog plot promote sig-
nificant changes in �z�support. The arch size distribution can be
fitted very well to a parabola in a semilogarithmic plot. How-
ever, this fitting can only be extended up to s=7 or 8, since
we find no arches with more than eight disks in our simula-
tions. Presumably, simulations with a larger number of par-
ticles and a wider container will occasionally present larger
arches. From Fig. 6, we can see that the simple exponential
model we presented above is not suitable to describe arch
distributions in 2D packings.

FIG. 7. Distribution of the horizontal span ns�x� of the arches:
�a� arches with two disks, �b� arches with three disks, and �c� arches
with four disks. Part �d� corresponds to the horizontal span distri-
bution over all arches. The dotted line corresponds to A=1.2. The
dashed line corresponds to A=1.1. Solid line corresponds to the
restricted random walk model �see Ref. �4��.

FIG. 8. Packing fraction �a� and �z�support �b� as a function of the
tapping amplitude A along an annealed tapping. Tapping amplitude
is increased and decreased several cycles. Each increasing �decreas-
ing� cycle takes 2000 taps. As a reference, we show the steady state
obtained through constant tapping amplitude with symbols and
solid thick line �see Fig. 3�. The solid thin line corresponds to the
initial increase of A. The dashed line corresponds to the decreasing
phase and the dotted line to the increasing phase. All increasing
cycles �apart from the initial increase� are averaged to produce a
single curve. The same is done with the decreasing cycles. The
insets show results where each increasing �decreasing� cycle is per-
formed in only 200 taps.
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We have also analyzed the horizontal span of the arches.
In Fig. 7 we represent ns�x� for s=2 �a�, 3 �b�, and 4 �c� and
the horizontal span n�x� averaged over all arches �Fig. 7�d��.
We include results from two simulations just before and after
the order-disorder transition along with the theoretical model
presented by To et al. �4� based on a restricted random walk.
In the case of n�x� we have no theoretical prediction since a
theoretical model for n�s� is needed to weight the contribu-
tions of each size of arch.

In the ordered regime, we can appreciate a clear discreti-
zation of the arch extensions. This is easily understood since
in the ordered state particles—even those forming arches—
are organized in layers. Arches consisting of two disks, for
example, can be formed by two disks at the same layer �cor-
responding to the peak near x=1.0 in Fig. 7�a�� or by one
disk in one layer and another disk in the next layer displaced
half “lattice constant” in x �corresponding to the peak near
x=0.5�. This argument can be extended to larger arches. See
Fig. 4�b� to appreciate the form of the arches in the ordered
regime.

In the disordered regime, arches have no distinct lateral
extensions but a continuous distribution. This is in agreement
with the simple model by To et al. which was actually de-
signed to represent arches at the outlet of a hopper. However,
our arches tend to be more extended than those from the
restricted random walk model. In particular, for two-disk
arches, we have no incidence of zero lateral span �corre-
sponding to one disk on top of the other� in contrast with the
model.

Finally, in order to check the ability of the simulation
model to reproduce some features typical of granular mate-
rials, we have also performed an annealed tapping on the
system. We have increased and decreased A progressively
�from 1.0 to 2.0� 5 times and have plotted � and �z�support as
a function of A, averaging all A-increasing cycles and all
A-decreasing cycles separately. The very first A-increasing
cycle is kept aside. Each increase from A=1.0 to A=2.0

takes 2000 taps. The results in Fig. 8 correspond to averages
over 5 independent simulations using 500 particles. For ref-
erence, we include the steady state curves obtained at con-
stant tapping amplitude from Fig. 3. The inset shows results
where the ramp rate is increased so that each cycle takes only
200 taps instead of 2000.

According to Nowak et al. �1�, after the very first increas-
ing cycle, a granular bed should enter a reversible regime
where further cycles of the tapping amplitude follow the
same curve in the �-A plot. However, Mehta and Barker �22�
found in their 3D simulations a hysteresis loop and suggest
that the area of the loop should increase as the ramp rate is
increased. We also find hysteresis in our 2D simulations.
However, increasing the ramp rate does not clearly enlarge
the hysteresis loop. The most clear change due to the in-
crease in ramp rate is the difficulty that the system finds in
reaching the ordered regime. This is in agreement with the
experiments by Nowak et al. where an increase in the ramp
rate leads to lower densities in the small-A limit.

V. CONCLUSIONS

We have shown through a pseudodynamic simulation that
arches are ubiquitous in a 2D granular packing. Very light
tapping of the granular sample promotes layering of the par-
ticles. The transition from large-amplitude tapping �disor-
dered packings� to small-amplitude tapping �ordered pack-
ings� is very sharp and occurs without a phase separation
mechanism. Interestingly, we found that in a wide range of
tapping amplitudes an increase in the number of arches co-
incides with an increase of the density of the packing. With
exception of the order-disorder transition region, the mean
coordination number is always increased by increasing the
tapping amplitude, in contrast to what is found in 3D pack-
ings.
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